Chem. Ber. 113, 2398 - 2409 (1980)

Die Ringspannung von Cycloalkinen und ihre spektroskopischen Auswirkungen

Herbert Meier*, Hermann Petersen und Heinz Kolshorn

Institut für Organische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen 1

Eingegangen am 8. November 1979

Bildungsenthalpien $\Delta H_{\rm f}$ und geometrische Ringspannungen $E_{\rm g. Sp.}$ für Cyclooctin (1) und die drei isomeren Cyclooctenine 5–7 werden nach der MINDO/2-Methode auf der Basis vollständiger Geometrie-Optimierungen berechnet. Mit den Frequenzen der C=C-Valenzschwingungen (Abb. 4) und mit den ¹³C-Verschiebungswerten der acetylenischen Kohlenstoffatome (Abb. 6) ergeben sich quantitative Korrelationen, die zur Abschätzung von geometrischen Ringspannungen von großem Wert sind.

Ring Strain of Cycloalkynes and its Spectroscopic Consequences

The enthalpies of formation $\Delta H_{\rm f}$ and geometrical strain energies $E_{\rm g, Sp.}$ of cyclooctyne (1) and the three isomeric cyclooctenynes 5–7 are calculated with the MINDO/2-method on the basis of complete geometry optimizations. The frequencies of the C=C-stretching vibrations (fig. 4) and the ¹³C-shifts of the acetylenic carbon atoms (fig. 6) obey quantitative correlations, which are very useful for the evaluation of geometrical ring strains.

Die lineare Anordnung von vier Kohlenstoffatomen beim Einbau einer C=C-Dreifachbindung in einen carbocyclischen Ring ist erst vom Cyclodecin an aufwärts möglich. Beim Cyclononin und kleineren Ringen werden die Bindungslängen l_i und vor allem die Bindungswinkel α_i verzerrt. Die Inkremente Δl_i und $\Delta \alpha_i$ beziehen sich dabei auf einen Satz von Standard-Bindungslängen und Standard-Bindungswinkeln. Bei unverzerrten Doppel- und Dreifachbindungen sind die sich überlappenden p_{π} -Orbitale parallel orientiert, und es resultiert eine ebene bzw. lineare Geometrie. In gespannten Systemen ist bei diesen Strukturelementen mit Deformationen zu rechnen, deren Definitionen Δl , $\Delta \alpha$ und $\Delta \Theta$ an einer verzerrten Dreifachbindung die Skizze zeigt.

Als Folge der geometrisch bedingten Anforderungen tritt eine *geometrische Ring-spannung*¹⁾ auf.

$$E_{g, Sp.} = f(\Delta l_i, \Delta \alpha_i, \Delta \Theta_i)$$

Durch die Wechselwirkung nicht direkt aneinander gebundener Atome werden zusätzlich Deformationen und damit zusätzliche Spannungsenergien induziert. Die Gesamtsumme ist die *sterische Energie*.

$$E_{\rm st.} = f(\Delta l_i', \Delta \alpha_i', \Delta \Theta_i' \dots)$$

Explizit bedeutet das, daß z. B. auch Cyclodecin keine 180° -Winkel an den sp-Kohlenstoffatomen aufweisen wird, und daß es eine sterische Energie $E_{st} > 0$ hat.

[©] Verlag Chemie, GmbH, D-6940 Weinheim, 1980 0009 – 2940/80/0707 – 2398 \$ 02.50/0

Die oben definierte geometrische Ringspannung besitzt den Vorzug, daß sie nur dort von 0 verschieden ist, wo man aufgrund der chemischen Eigenschaften von gespannten Ringen reden kann – also z. B. bei Cyclooctin (1) oder bei *trans*-Cycloocten (2), aber nicht bei *cis*-Cycloocten (3) oder Cyclooctan (4).

Die geometrische Ringspannung null läßt sich sofort anhand von "starren" Molekülmodellen, wie den Dreiring-Modellen, feststellen. Bei $E_{g, Sp} > 0$ kann der Zahlenwert durch eine Kraftfeldrechnung²⁾ oder quantenmechanisch^{1b)} bestimmt werden. In beiden Fällen ist dazu eine Geometrie-Optimierung notwendig.

Von besonderem Interesse ist naturgemäß ein Vergleich der berechneten Molekülparameter (Bindungslängen, -winkel, Bildungsenthalpien, Spannungsenergien) mit experimentellen Daten.

Wir haben mit der MINDO/2-Methode³⁾ von *cis*-Cycloocten (3), Cyclooctin (1) und den drei strukturisomeren *cis*-Cycloocteninen (5–7) die Bildungsenthalpien $\Delta H_{\rm f}$ berechnet.

Bei 3 lag eine ausführliche MINDO/2'-Studie bereits vor⁴⁾. Die optimierten Geometrien von 1, 5, 6 und 7 sind in den Abbildungen 1, 2 wiedergegeben.

Die berechneten Molekülparameter von Cyclooctin (1) stehen in einem vernünftigen Verhältnis zu den experimentell durch Elektronenstrahlbeugung⁵⁾ gefundenen Werten und den Daten einer Kraftfeldrechnung⁶⁾.

Wie man aus Abb. 1, 2 entnehmen kann, ist die Verzerrung der Bindungslängen Δl_i relativ klein – bezogen auf MINDO/2-Standardwerte; z. B.:

Cá 376/79.1

Abb. 1. Links: Cyclooctin (1) nach MINDO/2 (C_2 -Symmetrie). – Rechts: 1-Cycloocten-3-in (5) nach MINDO/2 (C_1). – ^{a,c)} Bindungslängen l_i und Bindungswinkel α_i . – ^{b,d)} Torsionswinkel Θ_i

Abb. 2. Links: 1-Cycloocten-4-in (6) nach MINDO/2 (C_1). – Rechts: 1-Cycloocten-5-in (7) nach MINDO/2 (C_s -Symmetrie). – ^{a, c)} Bindungslängen l_i und Bindungswinkel α_i . – ^{b, d)} Torsionswinkel Θ_i

Bei den Bindungswinkeln treten dagegen große $\Delta \alpha_i$ auf, insbesondere an der Dreifachbindung. Mit Ausnahme der Verbindung 7, die eine C_s -Konformation hat, weisen die Strukturelemente der Doppel- und Dreifachbindungen auch beträchtliche $\Delta \Theta_i$ auf (Torsion, out-of-plane-Deformation).

Die Symmetrie (Punktgruppe) der energieärmsten Konformation ist bei 1 C_2 , bei 5 und 6 C_1 und bei 7 C_s . Bei allen vier Cycloalkinen ist die innermolekulare Beweglichkeit bei Raumtemperatur so groß, daß eine schnelle Ringinversion stattfindet⁷). De facto wird also eine höhere Symmetrie zu beobachten sein.

Abb. 3. Bildungsenthalpien ΔH_f und geometrische Ringspannung von Cyclooctan, *cis*-Cycloocten, Cyclooctin und den *cis*-Cycloocteninen nach MINDO/2

Die Standard-Bildungswärmen ΔH_f von Cyclooctan (4), *cis*-Cycloocten (3), Cyclooctin (1) und den Eninen 5 – 7 sind in Abb. 3 wiedergegeben. Der MINDO/2-Betrag für die Hydrierung einer ungespannten Dreifachbindung zur Doppelbindung (2-Butin \rightarrow *cis*-2-Buten) beträgt 120.8 kJ/mol. Schätzt man auf dieser Basis die entsprechenden Werte für 1, 5, 6 und 7 ab, dann erhält man die in Abb. 3 gestrichelt eingetragenen Niveaus. Die Differenzen zu den unter Berücksichtigung der Ringspannung berechneten Bildungsenthalpien betragen 50 – 90 kJ/mol. Sie sind ein direktes Maß für die geometrische Spannung, da in erster Näherung die nicht-bindenden Wechselwirkungen in 1, 5, 6 und 7 gleich groß sind wie in 3⁸. Die MINDO-Methode liefert bei Anwesenheit von C=C-Dreifachbindungen grundsätzlich zu kleine ΔH_{f} -Werte. Dieser systematische Fehler hebt sich bei der hier angewandten Bestimmung der geometrischen Spannungsenergien heraus. Der für Cyclooctin gewonnene Wert von 49.6 kJ steht im Einklang mit experimentell aus der Hydrierungswärme bestimmten Daten⁹.

Vor kurzem ist die Darstellung der Cyclooctenine $5-7^{1b,7,10}$ gelungen. Die gegenüber Cyclooctin (1) *erhöhte Ringspannung* macht sich in einer *erhöhten Reaktivität* bemerkbar. Während Cyclooctin bei Raumtemperatur praktisch wochenlang stabil ist, beträgt die Halbwertszeit von reinem 1-Cycloocten-3-in (5) – am anderen Ende der Reihenfolge in Abb. 3 – rund 4–5 Stunden.

Ganz charakteristisch kommt die Ringspannung in den spektroskopischen Eigenschaften zum Ausdruck^{11,12)}. Wir haben versucht, die früher rein qualitative Betrachtung zu quantifizieren.

IR-Spektren

Es fällt auf, daß bei gespannten Cycloalkinen die Valenzschwingung der C=C-Dreifachbindung nicht nur im Raman-, sondern auch im IR-Spektrum beobachtet werden kann. (Streng IR-inaktiv ist nur die C=C-Schwingung der Symmetriespezies \sum_{g}^{+} in der Punktgruppe $D_{\infty h}$.) In Tab. 1 sind die gemessenen Wellenzahlen \tilde{v} angegeben. Mit zunehmender Ringspannung erfolgt eine langwellige Verschiebung der Bande. Die Ringspannung bewirkt, wie oben diskutiert, eine starke Deformation der 180°-Winkel an den sp-Kohlenstoffatomen. Es bietet sich ein Modell an, das diesen Effekt als Hybridisierungsänderung in Richtung sp² interpretiert.

Abb. 4. Korrelation der Wellenzahl ṽ des Maximums der C≡C-Valenzschwingungsbanden mit der Größe der Bindungswinkel α an den acetylenischen C-Atomen für die Cycloalkine 1, 5, 6, 8, 9, 11, 12, 17, 18, 19 und 25 (Regressions-Koeffizient 0.975)

Die Abb. 4 zeigt eine lineare Korrelation zwischen den Wellenzahlen der Dreifachbindungs-Valenzschwingung und den Winkeln an den acetylenischen C-Atomen. (Bei unsymmetrischen Systemen ist ein gemittelter Winkel eingetragen.) Dabei soll nicht vergessen werden, daß die Schwingungsfrequenzen natürlich auch von an-

Verb	pindung	Wellen- zahl ỹ [cm ⁻¹]	Methode (IR, Raman)/ Medium	Lit.	Winkel an den acety- lenischen C-Atomen (g: gemessen b: berechnet)	Lit.
Cyclododecin (8) 1-Cyclododecen-7-in (9) 1-Cyclododecen-3-in (10) Cyclodecin (11) Cyclononin (12) Cyclooctin (1)		2285/2242 2290/2240 2220 2235 2230 2260/2206	R/rein R IR/rein IR IR IR/CCl ₄	d. A. ¹³⁾ d. A. ¹⁴⁾ ¹⁴⁾ ¹¹⁾	≈ 180° ≈ 180° 171.6 (b) 169.7 (b) 158.5 (g) 161.5 (b)	d. A. 6) 6) 5) 6)
5-Chlor-1-cyclooctin (13) 5-Hydroxy-1-cyclooctin (14) 5-Oxo-1-cyclooctin (15) 3,3,8,8-Tetramethyl- 1-cyclooctin (16)		2215 2202/2260 2198/2260 2230	IR/rein IR/rein IR/rein IR	15) 15) 15) 16)	162.7 (b)	d. A.
1-Cycloocten 1-Cycloocten 1,5-Cycloocta 1,3-Cyclohexa (Dehydrobe	vclooctin (10) 21 vcloocten-3-in (5) 21 vcloocten-4-in (6) 22 Cyclooctadiin (17) 22 Cyclohexadien-5-in 20 Dehydrobenzol) (18) 21	2180 2180.5 2280/2220 2237/2175 2085	IR/rein R/CDCl ₃ IR/rein IR/CCl ₄ IR/Argon- matrix	d. A. d. A. d. A. 17) 18)	153.7/162.5 (b) 160.8/161.5 (b) 159 (g) 127.4 (b) 123 (b)	d. A. d. A. 17) 19) 20)
s	19	2172/2145 2200/2170	IR R	12) 12)	145.8 (g)	21)
()	20	2190/2170 2210/2179 2158	IR/CCl ₄ R/rein	22)		
	21	2150/2185	IR/CCl ₄	11)		
	22	2225	IR	23)		
	23	2100	IR/CCl ₄	24)		
] 24	2140/2170	IR/CCl ₄	11)		
] 25	2180	IR/KBr	25)	155.8 (g)	26)

Tab. 1. $C \equiv C$ -Valenzschwingungen bei Cycloalkinen (d. A. = dieser Arbeit)

deren Faktoren beeinflußt werden – wie z. B. von Nachbargruppen, von der Ausbildung einer Konjugation, etc. Das ausschlaggebende Moment ist jedoch ganz offensichtlich die auf die Spannung zurückgehende Winkeldeformation, die im Sinn einer Hybridisierungsänderung die Bindungsordnung und damit die Kraftkonstante und die Wellenzahl erniedrigt. Häufig beobachtet man eine Aufspaltung der diskutierten Bande. Dieses Phänomen kann auch bei offenkettigen Alkinen auftreten. Man führt es auf eine Fermi-Resonanz mit Obertönen bzw. Kombinationsschwingungen aus der Valenzschwingung der zur Dreifachbindung benachbarten C – C-Bindung und CH₂-Rocking-Schwingungen zurück.

¹³C-NMR-Spektren

Eine besonders gute Sonde für die Ringspannung von Cycloalkinen stellt die ¹³C-Spektroskopie dar. In Abb. 5 sind die chemischen Verschiebungen von Cyclooctin (1) bzw. 1-Cycloocten-3-in (5) mit den Daten der ungespannten Modellverbindungen Cyclododecin (8) und 1-Cyclododecen-3-in (10) korreliert.

Abb. 5. ¹³C-Verschiebungen von Cyclododecin (8), Cyclooctin (1), 1-Cyclododecen-3-in (10) und 1-Cycloocten-3-in (5) (δ-Werte in CDCl₃, bez. auf TMS als int. Standard)

Man erkennt ausnahmslos die durch die Ringspannung induzierte Verschiebung der Signale zu tiefem Feld. Am markantesten ist der Effekt bei den acetylenischen C-Atomen. (Die Zuordnung der Signale in 5 und 10 steht im Einklang mit Literaturangaben über Enine²⁸⁻³⁰). Darüber hinaus wurden bei 10 das gekoppelte Spektrum, das ¹Hbreitband-entkoppelte Spektrum und selektive heteronukleare Doppelresonanzexperimente zur Auswertung des Kern-Overhauser-Effektes herangezogen.)

Ein Vergleich von *cis*-Cyclododecen (26), *cis*-Cycloocten (3) und den Dienen 27 - 29 mit Cyclododecin (8), Cyclooctin (1) und den Eninen 5 - 7 zeigt, daß die bei der Ein-

führung der Dreifachbindung erfolgende Verschiebung Δ der Signale der olefinischen bzw. acetylenischen C-Atome ganz wesentlich von der Ringspannung beeinflußt wird.

Die Δ -Werte geben eine lineare Korrelation mit der geometrischen Ringspannung (Abb. 6).

Abb. 6. Verschiebungswerte Δ der Signale der olefinischen bzw. acetylenischen C-Atome als Funktion der geometrischen Ringspannung. (Bei unsymmetrischen Systemen ist der Mittelwert von Δ eingesetzt. Regressions-Koeffizient 0.986)

δ-Werte (in CDCl ₃ , bez. auf TMS als int. Standard)	Lit.	Winkel an den acetylenischen C-Atomen (g: gemessen b: berechnet)	Lit.
81.5	d. A.	≈ 180 °	d. A.
94.5/78.6	d. A.	≈180°	d. A.
83	d. A.	171.6 (b)	6)
87.5	12)	169.7 (b)	6)
94.4	d. A.	158.5 (g)	5)
		161.5 (b)	6)
		162.7 (b)	d. A.
95.2/93.3	15)	-	-
94.7/94.3	15)	-	-
94.1/91.9	15)	_	-
97.6	12)	-	
114.5/94.5	d. A.	153.7/162.5 (b)	d. A.
95.8/96.0	d. A.	160.8/161.5 (b)	d. A.
100.4	10)	156 (b)	10)
		161.8 (b)	d. A.
95.8	17)	159 (g)	17)
108.5	12)	145.8 (g)	21)
111.6	11)	_	_
109.3	31)	155.8 (g)	26)
	δ-Werte (in CDCl ₃ , bez. auf TMS als int. Standard) 81.5 94.5/78.6 83 87.5 94.4 95.2/93.3 94.7/94.3 94.1/91.9 97.6 114.5/94.5 95.8/96.0 100.4 95.8 108.5 111.6 109.3		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Tab. 2. ¹³C-Verschiebungen der acetylenischen Kohlenstoffe in Cycloalkinen (in $CDCl_3$, bez. auf TMS als int. Standard) (d. A. = diese Arbeit)

Abb. 7. Korrelation der ¹³C-Verschiebung δ mit den Bindungswinkeln an den acetylenischen bzw. olefinischen C-Atomen. (Bei unsymmetrischen Systemen sind die Mittelwerte eingesetzt. Regressions-Koeffizient 0.963)

Um den Zusammenhang zwischen Ringspannung und ¹³C-Verschiebung besser zu durchleuchten, liegt es nahe, wie bei der Schwingungsspektroskopie auf das Hybridisierungsmodell zurückzugreifen. Trägt man die chemischen Verschiebungen (Tab. 2) der acetylenischen Kohlenstoffe gegen die Bindungswinkel an diesen Zentren auf, so ergibt sich wiederum eine lineare Korrelation (Abb. 7). Die Eckwerte sind dabei durch Cyclododecin (8) und Cyclododecen (26) gegeben, für die man bei ungestörter sp- bzw. sp²-Hybridisierung 180°- bzw. 120°-Winkel annimmt. Prinzipiell hängen die ¹³C-Verschiebungen von einer Reihe von Faktoren ab. So werden in der Klasse der hier untersuchten Verbindungen Substituenten- und Konjugationseffekte gewiß eine Rolle spielen – der dominierende Term ist jedoch offensichtlich die Ringspannung, die zu einer Änderung der Hybridisierung führt.

Ein Hauptanteil der geometrischen Ringspannung steckt in der Deformation der Bindungswinkel an den acetylenischen C-Atomen. Wie die Abbildungen 1, 2 zeigen, hat man bei 1, 5, 6 und 7 für diese Winkel $\Delta \alpha_i$ -Werte zwischen 17 und 26°. So ist es verständlich, daß die mit der Hybridisierungsänderung der sp-Kohlenstoffe einhergehende Änderung der ¹³C-Verschiebungen nicht nur mit den Bindungswinkeln α , sondern auch mit der geometrischen Ringspannung selbst eine Korrelation zeigt.

1-Cyclododecen-3-in (10) wurde wie folgt synthetisiert: Aus 2-Cyclododecen-1-on (30) erhält man über das Semicarbazon 31 das Selenadiazol 32, das thermisch gespalten wird. Der alternative Weg über das photochemisch erzeugte²⁷) homokonjugierte Enon 33 liefert zwar eine bessere Ausbeute an Semicarbazon, 34 reagiert jedoch mit Seleniger Säure unter Rückbildung von 33. Das Selenadiazol 35 entsteht massenspektroskopisch nachgewiesen nur in Spuren, so daß dieser Weg für präparative Zwecke ausscheidet.

Für die Unterstützung dieser Arbeit danken wir der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie.

2407

Experimenteller Teil

Geräte etc., wie vorstehend⁷). Die folgenden Verbindungen wurden nach Literaturangaben synthetisiert: 1³²), 5⁷), 6⁷), 7⁷), 8³³).

Darstellung von cis-1-Cyclododecen-3-in (10)

a) cis-2-Cyclododecen-1-on-semicarbazon (31): 22 g (0.12 mol) cis-2-Cyclododecen-1-on (30)^{34,35)} werden zu einer heißen filtrierten Lösung aus 13.6 g (0.12 mol) Semicarbazidhydrochlorid und 15 g (0.18 mol) Natriumacetat in 250 ml Ethanol gegeben. Es wird 1 h unter Rückfluß erhitzt. Nach Zugabe von Wasser bis zur Trübung fallen im Kühlschrank 17.4 g (60%) farblose Kristalle aus, die nach Umkristallisieren aus Methanol bei 215 – 216 °C schmelzen. – IR (KBr): 3430, 3310, 3190, 2920, 2850, 1685, 1650, 1558, 1465, 1120 cm⁻¹.

b) 6,7,8,9,10,11,12,13-Octahydrocyclododeca-1,2,3-selenadiazol (32): Zu einer Lösung von 3.00 g (12.66 mmol) 31 in 50 ml Dioxan wird langsam eine gesättigte wäßr. Lösung von 3.0 g (27 mmol) Selendioxid getropft. Nach 12 h Rühren bei 35 - 40 °C wird das ausgefallene Selen abfiltriert, das Lösungsmittel bei niedriger Temp. abgezogen, der Rückstand in 60 ml Ether aufgenommen, die Lösung dreimal mit 50 ml Wasser gewaschen und mit MgSO₄ getrocknet. Man chromatographiert an einer Säule (2 × 80 cm) mit Kieselgel/Benzol. Nach einer geringen Vorfraktion erhält man 1.52 g (45%) des Selenadiazols. Durch Tieftemperatur-Kristallisation (-80 °C, Ether) bilden sich farblose Kristalle, die bei 42 – 43 °C schmelzen.

IR (KBr): 2900, 2840, 1640, 1443, 1392, 1350, 1320, 1308, 1270, 1252, 733 cm⁻¹. - 13 C-NMR (CDCl₃): $\delta = 162.7$ (C-3a), 156.2 (C-13a), 139.7 (C-4), 119.0 (C-5), 30.9 (C-13), 27.1/26.7/26.3/25.4/25.3/25.3/ (C-12,11,10,9,8,7,6). - 1 H-NMR (CDCl₃): $\delta = 6.55$ (d, $^{3}J = 11.0$ Hz, 1 H, 4-H), 6.08 (d von t, $^{3}J = 11.0$, $^{3}J = 7.2$ Hz, 1 H, 5-H), 3.06 (t, 2 H, 13-H), 2.35 (m, 2 H, 6-H), 2.0 - 0.8 (m, 12H, 7,8,9,10,11,12-H). - MS (70 eV): m/e = 271 (< 1%, M + 1), 242 (5, M - N₂), 162 (15, M - N₂ - Se), 161 (35, M - N₂ - SeH), 105 (41), 93 (39), 91 (100), 79 (82), 67 (46), 41 (37).

 $C_{12}H_{18}N_2Se$ (269.3) Ber. C 53.53 H 6.74 N 10.40 Se 29.33 Gef. C 53.69 H 6.94 N 10.29 Se 29.08

c) *1-Cyclododecen-3-in* (10): Eine Zincke-Destillationsapparatur, die mit 1.22 g (4.5 mmol) 32 und 8 g Glaspulver beschickt ist, wird bei einem Druck von 20 Torr in ein 170 °C heißes Ölbad gestellt. In die Vorlage destillieren 381 mg farbloses Cyclododecenin. Ausb. 0.38 g (52%), Sdp. 246 °C.

IR (rein): 2920, 2860, 2220, 1615, 1460, 737 cm⁻¹. - ¹³C-NMR (CDCl₃): δ = 142.4 (C-4), 111.1 (C-3), 95.4 (C-1), 78.6 (C-2), 27.2, 26.8, 26.6, 26.4, 25.3, 25.1, 23.9 (C-5,6,7,8,9,10,11), 19.5 (C-12). - ¹H-NMR (CDCl₃): δ = 5.95 (d von t, ³J = 10.5, ³J = 7.8 Hz, 1 H, 1-H), 5.46 (d von t, ³J = 10.5, ⁴J = 1.8 Hz, 1 H, 2-H), 2.35 (m, 4H, 5,12-H), 2.0 - 1.0 (m, 12H, 6,7,8,9,10,11-H). - MS (70 eV): m/e = 162 (30%, M⁺⁻), 105 (39), 93 (44), 91 (100), 80 (51), 79 (95), 78 (40), 77 (48), 67 (36), 41 (46), 39 (42).

C₁₂H₁₈ (162.3) Ber. C 88.82 H 11.18 Gef. C 88.61 H 11.06

Die Umsetzung $33 \rightarrow 34 \rightarrow 35$ wurde analog zu $30 \rightarrow 31 \rightarrow 32$ durchgeführt.

Literatur

- Vgl. dazu ^{1a)} H. Meier, Synthesis 1972, 235. ^{1b)} H.Petersen, H. Kolshorn und H. Meier, Angew. Chem. 90, 483 (1978); Angew. Chem., Int. Ed. Engl. 17, 461 (1978).
- ²⁾ H. Meier, Vortrag bei der Chemiedozententagung in Regensburg 1976.
- ³⁾ N. Bodor, M. J. S. Dewar, A. Harget und E. Haselbach, J. Am. Chem. Soc. 92, 3854 (1970).
- ⁴⁾ G. Favini, C. Rubino und R. Todeschini, J. Mol. Struct. 41, 305 (1970).
- ⁵⁾ J. Haase und A. Krebs, Z. Naturforsch., Teil A 26, 1190 (1971).
- ⁶⁾ N. L. Allinger und A. Y. Meyer, Tetrahedron 1975, 1807.
- 7) H. Petersen und H. Meier, Chem. Ber. 113, 2383 (1980), vorstehend.
- 8) Die Zahlenwerte f
 ür die Spannungsenergien differieren ein wenig von den in Lit.^{1b)} angegebenen Daten. Dieser Umstand geht auf das ver
 änderte Bezugssystem mit Cyclooctan als Basis zur
 ück.
- 9) R. B. Turner, A. D. Jarrett, P. Goebel und B. J. Mallon, J. Am. Chem. Soc. 95, 790 (1973).
- ¹⁰⁾ W. Leupin und J. Wirz, Helv. Chim. Acta 61, 1663 (1978).
- ¹¹⁾ H. Meier, H. Gugel und H. Kolshorn, Z. Naturforsch., Teil B 31, 1270 (1976).
- ¹²⁾ A. Krebs und H. Kimling, Liebigs Ann. Chem. 1974, 2074.
- ¹³⁾ J. Saltiel und L. S. N. Lim, J. Am. Chem. Soc. 91, 5404 (1969).
- ¹⁴⁾ A. T. Blomquist, R. E. Burge jr., L. H. Liu, J. C. Bohrer, A. C. Sucsy und J. Kleis, J. Am. Chem. Soc. 73, 5510 (1951).
- ¹⁵⁾ H. Meier und H. Petersen, Synthesis 1978, 596.
- ¹⁶⁾ A. Krebs, Tetrahedron Letters 1968, 4511.
- ¹⁷⁾ E. Kloster-Jensen und J. Wirz, Helv. Chim. Acta 58, 162 (1975).
- ¹⁸⁾ O. L. Chapman, C.-C. Chang, J. Kolc, N. R. Rosenquist und H. Tomioka, J. Am. Chem. Soc. 97, 6586 (1975).
- 19) M. J. S. Dewar, Pure Appl. Chem. 44, 767 (1975).
- ²⁰⁾ J. W. Laing und R. S. Berry, J. Am. Chem. Soc. 98, 660 (1976).
- ²¹⁾ J. Haase und A. Krebs, Z. Naturforsch., Teil A 27, 624 (1972).
- ²²⁾ A. Krebs und H. Kimling, Angew. Chem. 83, 540 (1971); Angew. Chem., Int. Ed. Engl. 10, 509 (1971).
- 23) A. Krebs, J. Odenthal und H. Kimling, Tetrahedron Lett. 1975, 4663.
- ²⁴⁾ H. N. C. Wong und F. Sondheimer, Angew. Chem. 88, 126 (1976); Angew. Chem., Int. Ed. Engl. 15, 117 (1976).
- ²⁵⁾ H. N. C. Wong, P. J. Garratt und F. Sondheimer, J. Am. Chem. Soc. 96, 5604 (1974).
- ²⁶⁾ R. Destro, T. Pilati und M. Simonetta, J. Am. Chem. Soc. 97, 658 (1975).
- ²⁷⁾ Vgl. H. Nozaki, T. Mori und R. Noyori, Tetrahedron 22, 1207 (1966).
- ²⁸⁾ R. Zeisberg und F. Bohlmann, Chem. Ber. 107, 3800 (1974).
- ²⁹⁾ M. T. W. Hearn, J. Magn. Reson. 22, 521 (1976).
- ³⁰ J. Kowalewski, M. Granberg, F. Karlsson und R. Vestin, J. Magn. Reson. 21, 331 (1976).
- 31) J. Odenthal, Dissertation, Heidelberg 1975.
- 32) H. Bühl, H. Gugel, H. Kolshorn und H. Meier, Synthesis 1978, 536.
- 33) U. Timm und H. Meier, J. Heterocycl. Chem. 16, 1295 (1979).
- 34) M. Regitz und J. Rüter, Chem. Ber. 102, 3877 (1969).
- 35) Laut Lit.³⁴⁾ erhält man mit präparativer GC 20% cis- und 45% trans-2-Cyclododecenon. Die Aufarbeitung durch Säulenchromatographie (Kieselgel/Benzol) liefert dagegen in 85proz. Ausbeute reine cis-Verbindung, da unter diesen Bedingungen die thermische Isomerisierung zum thermodynamisch stabileren trans-Produkt vermieden wird.

[376/79]